skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tölli, Antti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. A novel coding design is proposed to enhance information retrieval in a wireless network of users with partial access to the data, in the sense of observation, measurement, computation, or storage. Information exchange in the network is assisted by a multi-antenna base station (BS), with no direct access to the data. Accordingly, the missing parts of data are exchanged among users through an uplink (UL) step followed by a downlink (DL) step. In this paper, new coding strategies, inspired by coded caching (CC) techniques, are devised to enhance both UL and DL steps. In the UL step, users transmit encoded and properly combined parts of their accessible data to the BS. Then, during the DL step, the BS carries out the required processing on its received signals and forwards a proper combination of the resulting signal terms back to the users, enabling each user to retrieve the desired information. Using the devised coded data retrieval strategy, the data exchange in both UL and DL steps requires the same communication delay, measured by normalized delivery time (NDT). Furthermore, the NDT of the UL/DL step is shown to coincide with the optimal NDT of the original DL multi-input single-output CC scheme, in which the BS is connected to a centralized data library. 
    more » « less
  3. A novel coding design is proposed to enhance information retrieval in a wireless network of users with partial access to the data, in the sense of observation, measurement, computation, or storage. Information exchange in the network is assisted by a multi-antenna base station (BS), with no direct access to the data. Accordingly, the missing parts of data are exchanged among users through an uplink (UL) step followed by a downlink (DL) step. In this paper, new coding strategies, inspired by coded caching (CC) techniques, are devised to enhance both UL and DL steps. In the UL step, users transmit encoded and properly combined parts of their accessible data to the BS. Then, during the DL step, the BS carries out the required processing on its received signals and forwards a proper combination of the resulting signal terms back to the users, enabling each user to retrieve the desired information. Using the devised coded data retrieval strategy, the data exchange in both UL and DL steps requires the same communication delay, measured by normalized delivery time (NDT). Furthermore, the NDT of the UL/DL step is shown to coincide with the optimal NDT of the original DL multi-input single-output CC scheme, in which the BS is connected to a centralized data library. 
    more » « less
  4. Enabling communications in the (sub-)THz band will call for massive multiple-input multiple-output (MIMO) arrays at either the transmit- or receive-side, or at both. To scale down the complexity and power consumption when operating across massive frequency and antenna dimensions, a sacrifice in the resolution of the digital-to-analog/analog-to-digital converters (DACs/ADCs) will be inevitable. In this paper, we analyze the extreme scenario where both the transmit- and receive-side are equipped with fully digital massive MIMO arrays and 1-bit DACs/ADCs, which leads to a system with minimum radio-frequency complexity, cost, and power consumption. Building upon the Bussgang decomposition, we derive a tractable approximation of the mean squared error (MSE) between the transmitted data symbols and their soft estimates. Numerical results show that, despite its simplicity, a doubly 1-bit quantized massive MIMO system with very large antenna arrays can deliver an impressive performance in terms of MSE and symbol error rate. 
    more » « less
  5. null (Ed.)